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Introduction: EC in cryptography

• Starting point: 1985 (V. Miller)

• Discrete logarithm based systems

• EC are almost “generic groups”

– No general non-generic algorithm for DL

– High security with short keys

• Now present in standards (ECDSA)
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Choosing EC for cryptography

• According to a talk by Koblitz at IPAM

• Two possibilities

– A pragmatic anwer

– A paranoid answer
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Pragmatic Answer (Normal security)

• Special curves

– Counting points is easier

– Computation speed can be optimized

– Potential security risk
∗ Example: MOV attack (Weil pairings)

– Just avoid the known bad cases
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Paranoid answer (High security)

• Avoid all special curves

• Random or pseudo-random curves

– Large prime of the cardinal is needed

– Preferable to prove: EC is not an hidden special case
∗ Used a seeded deterministic generation
∗ Publish the seed of the PRNG
∗ Then users can check the generation process
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A recent idea: Using pairing constructively

• Starting point: ANTS IV (2000)

• (some) EC are groups with additional properties

– Cons: Subexponential algorithm for DL

– Pros: New properties in Cryptosystems

• Expanding area of Cryptography
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Tools
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Review of mathematic tools

• Elliptic Curves

• Divisors

• Function Field

• The Weil and Tate pairings

• Computing with divisors and functions
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Elliptic Curves

• Curve of genus 1 over some field K

• Often represented by an equation:

Y 2 = X3 + aX + b

• Group structure
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An elliptic curve
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Divisors

• Elements of the free group generated by the points of the curve.

• Formal sum of points on the curve
∑

cP (P )

• The degree of a divisor is
∑

cP .
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Function field

• For an elliptic curve over K given by:

Y 2 = X3 + aX + b

• The function field is (informal notation):

K(X, Y )/(Y 2 − X3 − aX − b).

• For a function f , its zeroes and poles define a divisor div(f).

• A function f can be evaluated at a point or a divisor.
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Principal Divisors

• A divisor of the form div(f) is called principal

• Principal divisors are of degree 0

• On an elliptic curve, a divisor is principal iff its degree is zero
and its evaluation on the curve is zero.

• Any divisor can be written as:

(P ) − (O) + div(f)

for some point P and some function f .
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From divisors to functions

• A divisor D is called q-fold when qD is principal

• If D = (P ) − (O) + div(g) is q-fold,
we can compute f such that qD = div(f).
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Explicit computation

• Write qD1 as div(fD1):

– Start from

D1 = ((aP ) − (O)) − ((aQ) − (O))

– Use addition formulas:
∗ D = (P ) − (O) + div(f),
∗ D′ = (P ′) − (O) + div(f ′)
∗ Then

D + D′ = (P + P ′) − (O)

+div(ff ′g)

∗ where g = l/v: l line (P, P ′) and v line (P + P ′, O).

• Optional: Evaluate it at D2 (fundamental for performance)
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The Weil Pairing

• Given P and Q two q-torsion points

• Let

DP = (P ) − (O)

DQ = (Q) − (O)

• Compute
eq(P, Q) = fDP (DQ)/fDQ(DP )

• Warning: Write DP as (P + R) − (R)

• eq(P, Q) is a q-th root of unity

• eq is called the Weil Pairing
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The Weil Pairing – Some Properties

• Identity eq(P, P ) = 1

• Alternation eq(P, Q) = eq(Q, P )−1

• Bilinearity

eq(P + Q, R) = eq(P, R)eq(Q, R)

eq(R, P + Q) = eq(R, P )eq(R, Q)

• Non-Degeneracy If P is non-zero, there exist some q-torsion
point Q such that eq(P, Q) �= 1.
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The Tate Pairing

• Given D1 and D2 two q-fold divisors

• Compute Tq(D1, D2) = fD1(D2)

• Tq(D1, D2) is in K∗/K∗q

• tq(D1, D2) = Tq(P, Q)(p
r−1)/q is a root of unity

• As before

DP = (P ) − (O)

DQ = (Q + R) − (R)

• Bilinear symmetric

• Usually faster than the Weil pairing
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Elliptic curves with computable pairing

• A curve E over Fp and a “small” r such that:

NE | pr − 1.

• On such curves, we find:

〈aP, bQ〉 = 〈P, Q〉ab in Fpr

– Constructed using pairings

– Efficiently computable
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Some examples

• Smallest r:
NE = p − 1.

• Supersingular curves (r = 2):

NE = p + 1 | p2 − 1.

• Supersing. in char 3 (r = 6):

NE = 3n ± 3
n+1

2 + 1 | 36n − 1.

• With CM in large char. (example r = 6):

p = l2 + 1,

NE = l2 − l + 1 | p6 − 1.
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An important special case

• We have a single point pairing when

〈P, P 〉 �= 1.

• However, directly works only with the first of the above examples

• In fact, always works when:

– NE = p − 1

– P is a q–torsion point

– and q2 does not divides p − 1

• Constructing such curves is hard
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Single point pairing with supersingular curves

• Nice solution found by Verheul

• With supersingular curves, only part of the q–torsion is defined
over the base field

• A distorsion is an endomorphism Ψ such that:

– Ψ(P ) is not defined over the base field when P �= 0 is.

– Thus Ψ(P ) is not in the subgroup generated by P
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Single point pairing with supersingular curves

• As a consequence:

– w(P, Ψ(P )) �= 1

• Thus the modified pairing:

〈P0, P1〉 = w(P0, Ψ(P1))

is a single point pairing.

• It sends pairs of points (over the base field) to roots of unity (in
the extension field).

• It is bilinear and symmetric
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Some distorsions

Field Curve Distorsion Conditions Order Mul

Fp y2 = x3 + ax
(x, y) �→ (−x, iy)

i2 = −1
p ≡ 3[4] p + 1 2

Fp y2 = x3 + a
(x, y) �→ (ζx, y)

ζ3 = 1
p ≡ 2[3] p + 1 2

F
p2

y2 = x3 + a

a �∈ Fp

(x, y) �→ (ω xp

r(2p−1)/3 ,
yp

rp−1 )

r2 = a, r ∈ F
p2

ω3 = r, ω ∈ F
p6

p ≡ 2[3] p2 − p + 1 3

F3n y2 = x3 + 2x + 1

(x, y) �→ (−x + r, uy)

u2 = −1, u ∈ F32n

r3 + 2r + 2 = 0, r ∈ F33n

n ≡ ±1[12] 3n + 3
n+1

2 + 1 6

F3n y2 = x3 + 2x + 1

(x, y) �→ (−x + r, uy)

u2 = −1, u ∈ F32n

r3 + 2r + 2 = 0, r ∈ F33n

n ≡ ±5[12] 3n − 3
n+1

2 + 1 6

F3n y2 = x3 + 2x − 1

(x, y) �→ (−x + r, uy)

u2 = −1, u ∈ F32n

r3 + 2r − 2 = 0, r ∈ F33n

n ≡ ±1[12] 3n − 3
n+1

2 + 1 6

F3n y2 = x3 + 2x − 1

(x, y) �→ (−x + r, uy)

u2 = −1, u ∈ F32n

r3 + 2r − 2 = 0, r ∈ F33n

n ≡ ±5[12] 3n + 3
n+1

2 + 1 6
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Abstract single point pairing

• For crypto applications, we can forget EC and view pairings as
follows:

– Let G1 and G2 be two (cyclic) groups of prime order �

– A pairing is bilinear symmetric map from G1 to G2

– The group operation on G1 is written additively

– The group operation on G2 is written multiplicatively

– Some operations (such as DL) are hard on G1 and/or G2
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Application
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Applications of the pairing

• Cryptanalytic purpose

• Constructive side

– Tripartite Diffie-Hellman

– Identity based encryption

– Short Signatures

– Verifiable random functions

27



�

�

�

�

Pairing for cryptanalysis

• Called the MOV attack

• Use the pairing with R to move

Q = aP

on the EC to
〈Q, R〉 = 〈P, R〉a

in the finite field

• Yields a subexponential algorithm.
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Usual Diffie–Hellman

• Alice publishes ga, Bob publishes gb

• Both compute (ga)b = (gb)a

They end up with a (computational) common secret.
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Can we do more ?

• Yes, Conference keying

– All t users publish Xi = gai

– Publish Yi = (Xi+1/Xi−1)ai

– Common key computed as:

Xtai
i−1 · Y t−1

i · Y t−2
i+1 · · ·Y 2

i+t−3 · Y 1
i+t−2

In fact it is:
ga1a2+a2a3+···+at−1at+ata1 .

• However, non-interactivity is lost.
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Our Goal: One round Tripartite Diffie–Hellman

• Alice, Bob and Charlie publish (something similar to) ga, gb, gc

• They all compute gabc
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Tripartite Diffie–Hellman

With a single point pairing:

• P a point of order q.

• Alice, Bob and Charlie publish
aP , bP and cP

• They all compute:

〈bP, cP 〉a = 〈cP, aP 〉b = 〈aP, bP 〉c

• This value is the common secret (in G2)
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Identity based encryption

• Concept introduced by Shamir in 1984

• Goal: Offer a simpler replacement of PKIs

• Main idea: Use name as public key

• Problem: Finding the private key

• Computationally heavy solution of Maurer and Yacobi (92)
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Identity based encryption with pairings
Boneh Franklin – Crypto 2001

• Parameters: Ppub, Qpub = sPpub (s is secret)

• Public key of user ID: QID = G(ID)

• Private key of user ID: PID = sQID

• Key exchange with user ID

– Pick a random r

– Send rQpub to ID

– The exchange key is derived from

〈QID, rPpub〉 = 〈PID, rQpub〉.

• Can be used in El Gamal like encryption.
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Short signatures

• Recurring problematic

• Signatures are often too long

• RSA: Signatures have the length of the modulus

• Diffie-Hellman: Lengths are doubled (due to randomization)

• Others: Potential short signatures with multivariate crypto.
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Short signatures with pairings
Boneh Shacham Lynn – Asiacrypt 2001

• Public key: P , Q = sP (s is secret)

• Private key: s

• To sign M send it to a point PM = G(M) on G1

• The signature is σ the x-coordinate of sPM

• To verify the signature M , σ

– Find a point S with x-coordinate σ

– Compute u = 〈P, S〉 and v = 〈Q, PM 〉
– Accept if u = v or u = v−1
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Verifiable random functions

• Pseudo-Random functions are very useful in cryptography

• They use a secret key

• Verifiable random functions allow verification by a third party

• Must use a private/public key pair

• First known construction by Dodis (2002) using pairings
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Security
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Security Issues

• The security of application relies on some hard problems related
to pairing:

• In Boneh-Franklin: Weil Diffie-Hellman (WDH) problem

– Given (P, aP, bP, cP ) for random a, b, c compute
w(P, Ψ(P ))abc

• Can be generalized to any pairing: TDH

• Gives security in the random oracle model
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Security Issues

• Alternatively, could use the decision problem DTDH.

– Given (P, aP, bP, cP, dP ), decide whether d = abc (modulo the
order of P )
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Other classical related problems

• DDH in G1: DDHG1

• DDH in G2: DDHG2

• CDH in G1: CDHG1

• CDH in G2: CDHG2

• DL in G1: DLG1

• DL in G2: DLG2
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Some less classical problems

• GTI: general Tate inversion

– Given g in G2, find P and Q such that:

〈P, Q〉 = g.

• FTI: fixed (operand) Tate inversion

– P being fixed

– Given g in G2, Q such that:

〈P, Q〉 = g.
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Relations between the complexity assumptions

CDHG1 −−−−−→ DLG1

↗ ↘ ↓
DTDH → TDH GTI → FTI −→ DLG2

↘ ↘ ↗ �
DDHG2 → CDHG2 DLG1 or GTI
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Choosing EC for pairing-based cryptography

• Many possibilities

– Singular or supersingular

– Embedding degree k from 1 to 24 (largest effective example)

• Possibility of “high-security” discussed by Koblitz and Menezes
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Conclusion

Questions
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