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Introduction: EC in cryptography
Starting point: 1985 (V. Miller)
Discrete logarithm based systems

EC are almost “generic groups”
— No general non-generic algorithm for DL

— High security with short keys
Now present in standards (ECDSA)




Choosing EC for cryptography
e According to a talk by Koblitz at IPAM
e Two possibilities

— A pragmatic anwer

— A paranoid answer




-

Pragmatic Answer (Normal security)

e Special curves
— Counting points is easier
— Computation speed can be optimized

— Potential security risk
x FExample: MOV attack (Weil pairings)

— Just avoid the known bad cases
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Paranoid answer (High security)
e Avoid all special curves

e Random or pseudo-random curves
— Large prime of the cardinal is needed

— Preferable to prove: EC is not an hidden special case

x Used a seeded deterministic generation
« Publish the seed of the PRNG

+x Then users can check the generation process
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A recent idea: Using pairing constructively
e Starting point: ANTS IV (2000)

e (some) EC are groups with additional properties
— Cons: Subexponential algorithm for DL

— Pros: New properties in Cryptosystems

e Expanding area of Cryptography
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Tools




Review of mathematic tools
Elliptic Curves
Divisors
Function Field
The Weil and Tate pairings

Computing with divisors and functions
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Elliptic Curves

e Curve of genus 1 over some field K

e Often represented by an equation:

e Group structure

Y2=X34+aX+b




An elliptic curve
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Divisors
e Elements of the free group generated by the points of the curve.

e Formal sum of points on the curve

> cp(P)

e The degree of a divisor is ) cp.
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Function field

For an elliptic curve over K given by:
Y?2=X"+aX +b
The function field is (informal notation):
K(X,Y)/(Y? - X°—aX — D).

For a function f, its zeroes and poles define a divisor div(f).

A function f can be evaluated at a point or a divisor.
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Principal Divisors
A divisor of the form div(f) is called principal
Principal divisors are of degree 0

On an elliptic curve, a divisor is principal iff its degree is zero

and its evaluation on the curve is zero.

Any divisor can be written as:
(P) = (O) + div(f)

for some point P and some function f.
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From divisors to functions

e A divisor D is called ¢-fold when ¢D is principal

o If D= (P)—(0)+div(g) is g-fold,
we can compute f such that ¢D = div(f).

\_
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/ Explicit computation \
e Write gD as div(fp,):

— Start from

Dy = ((aP) = (0)) = ((aQ) — (0))
— Use addition formulas:
x D= (P)—(0)+div(f),
« D' = (P') = (0) + div(f')
* Then
D+D" = (P+P)—(0)
+div(f f'g)

« where g = [/v: [ line (P, P') and v line (P + P’,O).

\o Optional: Evaluate it at Dy (fundamental for performance) /
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The Weil Pairing

Given P and (Q two ¢-torsion points

Let
Dp = (P)—-(0)
Do = (@) —(0)

Compute
eQ(P7 Q) — fDP(DQ)/fDQ(DP)

Warning: Write Dp as (P + R) — (R)
eq(P, Q) is a g-th root of unity

eq 1s called the Weil Pairing
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The Weil Pairing — Some Properties
Identity e, (P, P) =1
Alternation e, (P, Q) = ¢,(Q, P)~*

Bilinearity
eQ(P +Q,R) = €CI(P7 R)GQ(Qv R)

eQ(R7 P+ Q) — €CI(R7 P)GQ(Rv Q)

Non-Degeneracy If P is non-zero, there exist some g-torsion
point () such that e,(P, Q) # 1.

/
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The Tate Pairing

e Given D and Dy two g-fold divisors
e Compute T,(D1,D2) = fp,(D2)
o T,(D1,Dy) is in K*/K*
o t,(D1,Dy) =T,(P,Q)» ~1/4is a root of unity
e As before

Dp = (P)—=(0)

Do = (@+R)—(R)

e Bilinear symmetric

e Usually faster than the Weil pairing

\_
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Elliptic curves with computable pairing

e A curve I over I, and a “small” r such that:
Ng|p" —1.
e On such curves, we find:
(aP,bQ) = (P, Q)" in F-

— Constructed using pairings

— Efficiently computable

\_
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Some examples

e Smallest 7r:
NE =P — 1.

e Supersingular curves (r = 2):
Ng=p+1|p*—1.
e Supersing. in char 3 (r = 6):
Np=3"+3"% 4+1]3" 1.
e With CM in large char. (example r = 6):
p=1%+1,

Ng=01*—-1+1]p°—1.
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An important special case

We have a single point pairing when
(P, P) # 1.

However, directly works only with the first of the above examples

In fact, always works when:
— N E—pP— 1
— P is a g—torsion point

— and ¢? does not divides p — 1

Constructing such curves is hard
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Single point pairing with supersingular curves
e Nice solution found by Verheul

e With supersingular curves, only part of the g—torsion is defined
over the base field

e A distorsion is an endomorphism V¥ such that:
— W(P) is not defined over the base field when P # 0 is.
— Thus ¥(P) is not in the subgroup generated by P

\_
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Single point pairing with supersingular curves
e As a consequence:
— w(P,W(P)) #1
e Thus the modified pairing:
(Po, P1) = w(Py,V(P))
is a single point pairing.

e It sends pairs of points (over the base field) to roots of unity (in

the extension field).

e It is bilinear and symmetric

- /
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Some distorsions

Field Curve Distorsion Conditions Order Mul
Fp v2 = 23 4 ax (@, y)z'_’ (-, iy) p = 3[4] p+1 2
14 = —1
(z,y) — (Cz, y)
Fp y2 = x3 4 a p = 2[3] p+1 2
¢3=1
zP yp
x, — (w ,
v2 =23 +a (©y) = W e —y/3 p—1)
F o r2 —a,r €F 4 p = 2[3] p? —p+1 3
w3 = r,w el g
p
(z,y) — (== + 7, uy) n+1
Fan 2 =—z3 2241 w? = —1,u € Faop n=4+1[12] | 3" 43~ 2 41 6
3
r —|—27’—|—2:O,7’€F33n
(may) = (—:‘C + 7, 'U'y) n+1
Fan 2=a3 f20+1 w? = —1,u € Fyop n=45[12] | 3% —3" 2 41 6
3
r —|—27’—|—2:O,7’€F33n
(:Cay) — (—QZ—I-’T’, Uy) ,n_l_l
Fan 2 =23 420 -1 w? = —1,u € Fyop n=41[12] | 3" —3 2 41 6
3 _
r —|—2r—2_0,r€]F33n
(:Cay) — (—QZ—I-’T’, Uy) TL—|—1
Fan 2 g3 41221 u2:—1,u€F32n n = +5[12] 3" 4+ 3 2 41 6

3 —
r —|-27“—2_O,r615‘33n
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Abstract single point pairing
e For crypto applications, we can forget EC and view pairings as
follows:
— Let G; and G be two (cyclic) groups of prime order /¢
— A pairing is bilinear symmetric map from Gy to Go
— The group operation on G; is written additively
— The group operation on Gy is written multiplicatively

— Some operations (such as DL) are hard on G; and/or G,

~

/
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Application
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Applications of the pairing
e Cryptanalytic purpose

e Constructive side
— Tripartite Diffie-Hellman
— Identity based encryption
— Short Signatures

— Verifiable random functions
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Pairing for cryptanalysis
e Called the MOV attack

e Use the pairing with R to move
Q =aP

on the EC to
<Q7R> — <P7 R>a
in the finite field

e Yields a subexponential algorithm.

\_
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Usual Diffie—Hellman

e Alice publishes g%, Bob publishes ¢°
e Both compute (¢g%)° = (¢g")?

They end up with a (computational) common secret.

\_
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Can we do more ?

e Yes, Conference keying
— All t users publish X; = g%
— Publish V; = (Xj41/X;-1)"

— Common key computed as:
ta; yt—1 yrt—2 2 1
X0, ' Y7;+1 o 'Y7;+t—3 ' Yi—i—t—2

In fact it is:

ajaz+tasaz+---+ar_i1a¢t+aral

g

e However, non-interactivity is lost.

\_
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Our Goal: One round Tripartite Diffie-Hellman

e Alice, Bob and Charlie publish (something similar to) g%, ¢°, ¢¢

e They all compute g®*¢

- /
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Tripartite Diffie-Hellman
With a single point pairing:
e P a point of order q.

e Alice, Bob and Charlie publish
aP, bP and cP

e They all compute:
(bP,cP)* = (cP,aP)’ = (aP,bP)*

e This value is the common secret (in Go)

\_
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Identity based encryption
Concept introduced by Shamir in 1984
Goal: Offer a simpler replacement of PKIs
Main idea: Use name as public key
Problem: Finding the private key

Computationally heavy solution of Maurer and Yacobi (92)
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Identity based encryption with pairings
Boneh Franklin — Crypto 2001

Parameters: P, ,, @ = sPhuh (s is secret)

pub
Public key of user ID: Qip = G(ID)
Private key of user ID: Py = s@Qp

Key exchange with user ID
— Pick a random r

— Send Tqub to ID

— The exchange key is derived from

<QID7 TPpub> — <PID7 Tqub>

Can be used in El Gamal like encryption.

~

34



Short signatures
Recurring problematic
Signatures are often too long
RSA: Signatures have the length of the modulus
Diffie-Hellman: Lengths are doubled (due to randomization)

Others: Potential short signatures with multivariate crypto.
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Short signatures with pairings
Boneh Shacham Lynn — Asiacrypt 2001

e Public key: P, Q = sP (s is secret)

e Private key: s

e To sign M send it to a point Py; = G(M) on G4
e The signature is o the x-coordinate of sP,

e To verify the signature M, o
— Find a point S with x-coordinate o
— Compute u = (P, S) and v = (Q, Py)

— Acceptifu =voru=v"1!

\_
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Verifiable random functions
Pseudo-Random functions are very useful in cryptography
They use a secret key
Verifiable random functions allow verification by a third party
Must use a private/public key pair

First known construction by Dodis (2002) using pairings
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Security Issues

e The security of application relies on some hard problems related

to pairing:

e In Boneh-Franklin: Weil Diffie-Hellman (WDH) problem

— Given (P, aP,bP,cP) for random a, b, ¢ compute
w(P, W(P))*

e Can be generalized to any pairing: TDH

e (Gives security in the random oracle model
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e Alternatively, could use the decision problem DTDH.

Security Issues

— Given (P, aP,bP,cP,dP), decide whether d = abc (modulo the

order of P)

/
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Other classical related problems
DDH in G;: DDHg,
DDH in G»: DDHg,
CDH in G1: CDHg,
CDH in G,: CDHg,
DL in G;: DLg,
DL in Go: DLg,

41




-

Some less classical problems

e GTI: general Tate inversion

— Given g in 9, find P and () such that:

(P,Q) =g

e FTI: fixed (operand) Tate inversion
— P being fixed

— Given g in Go, @) such that:

(P,Q) =g.
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Relations between the complexity assumptions

CDHg, — DL,
/ \ l
DTDH — TDH GTI — FTI — DL,
\ \ / !
DDHg, — CDHg, DLg, or GTI
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Choosing EC for pairing-based cryptography

e Many possibilities
— Singular or supersingular

— Embedding degree k from 1 to 24 (largest effective example)

e Possibility of “high-security” discussed by Koblitz and Menezes

\_
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Conclusion
Questions
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