
'

&

$

%

Recent advances on iterated hash functions

Antoine Joux

DGA/SPOTI and

University de Versailles St-Quentin-en-Yvelines

France

1



'

&

$

%

State of the art

End of 2003

2



'

&

$

%

Security of Hash Functions

• Several properties are usually required:

– One-wayness

– Preimage resistance

– Second Preimage resistance

– Collision freeness

• Another property is also sometime used:

– k–collision freeness

3



'

&

$

%

One-wayness

H is a hash function on n bits.

• Given a set S

• Given M ∈ S

• Let h = H(M).

It should be hard from h to recover M .

• The generic attack is exhaustive search

• It runs in time proportional to the cardinality of S

4



'

&

$

%

Preimage resistance

H is a hash function on n bits.

• Given a set S

• Given M ∈ S

• Let h = H(M).

It should be hard from h to find M ′ ∈ S such that H(M ′) = h,

possibly with M = M ′.

• The generic attack is exhaustive search

• It runs in time cardinality of S or 2n (whichever is the smallest)

5



'

&

$

%

Second Preimage resistance

H is a hash function

• Given a set S

• Given M ∈ S

It should be hard to find M ′ 6= M with H(M ′) = H(M).

• The generic attack is exhaustive search

• It runs in time 2n

6



'

&

$

%

Collision freeness

H is a hash function

• Given a set S

It should be hard to find distinct M and M ′ with

H(M) = H(M ′).

• The generic attack is birthday paradox

• It runs in time 2n/2

7



'

&

$

%

k-Collision freeness

• Given a set S

It should be hard to find M1, . . . , Mk with

H(M1) = · · · = H(Mk).

• The generic attack is generalized birthday paradox

• It runs in time 2n·(k−1)/k

8



'

&

$

%

Iterated Hash functions

• Many practical hash functions are iterated hash functions

– Examples: SHA, MD4, MD5, Tiger, . . .

• They are based on a compression function

• The compression function f takes as input a state and a message

block

• It outputs a new state

9



'

&

$

%

Iterated Hash functions

After an initial transform (padding) the message is split into blocks

B1, . . . , Bt.

• The computation starts from h0 an initial state

• Then it loops from i = 1 to i = t, computing

hi+1 = f(hi, Bi).

• ht is the final hash value

10



'

&

$

%

Example of a security problem

• Assume that :

f(h, B) = πB(h)

• Then, there is a 2n/2 “only” preimage attack.

• On two blocks, we want to find f(f(h0, B), B′) = hF ) :

– Compute 2n/2 values f(h0, Bi)

– Compute 2n/2 values f−1(hF , B′

j)

– A collision between the two sets yields the expected preimage.

• Usually fixed by

f(h, B) = πB(h) + h

11



'

&

$

%

Padding

• The most commonly encountered padding is as follows:

• Complete the message by a bitstring :

1000 · · · 000

• Then add the binary representation of the initial message length

• The number of ’0’ is the minimal number that yields an integral

number of blocks.

• This padding is redundant, why ?

• Can we choose a simpler padding ?

12



'

&

$

%

Second preimage on long messages

• Let M be a long message (say N ≈ 2n/2 blocks)

• Let h1, . . . , hN denote the intermediate hash values.

• Choose M ′ another random long message, with hash values h′

j

• Any collision hi = h′

j yields a second preimage of H(M)

• The redundant padding avoids this attack.

13



'

&

$

%

A case example: SHA

14



'

&

$

%

SHA compression function

Initialize
D

A(0), B(0), C(0), D(0), E(0)
E

For i = 0 to 79

A(i+1) =

ADD
“

W (i), ROL5

“

A(i)
”

, f (i)
“

B(i), C(i), D(i)
”

, E(i),K(i)
”

B(i+1) = A(i)

C(i+1) = ROL30

“

B(i)
”

D(i+1) = C(i)

E(i+1) = D(i)

Output
D

A(0) + A(80), B(0) + B(80), C(0) + C(80), D(0) + D(80), E(0) + E(80)
E

15



'

&

$

%

Functions f (i)(X,Y, Z), and Constants K(i)

Tour i Function f (i) Constant K(i)

Nom Dfinition

0 –19 IF (X ∧ Y ) ∨ (¬X ∧ Z) 0x5A827999

20–39 XOR (X ⊕ Y ⊕ Z) 0x6ED9EBA1

40–59 MAJ (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z) 0x8F1BBCDC

60–79 XOR (X ⊕ Y ⊕ Z) 0xCA62C1D6

16



'

&

$

%

Expansion in SHA-0

• Input:
〈

W (0), . . . , W (15)
〉

W (i) = W (i−3) ⊕ W (i−8) ⊕ W (i−14) ⊕ W (i−16) . (1)

• Output:
〈

W (0), . . . , W (79)
〉

17



'

&

$

%

Expansion in SHA-1

• Slight difference

W (i) = ROL1

(

W (i−3) ⊕ W (i−8) ⊕ W (i−14) ⊕ W (i−16)
)

. (2)

• E0 = (e0)
32 parallel expansion in SHA-0.

• E1 more complex expansion in SHA-1.

18



'

&

$

%

Rationale for the change

• No official explanation in 1995.

• At Crypto 1998 [Chabaud, J.]

• Differential attack

• 261 complexity collision on SHA-0

19



'

&

$

%

Recent results

2004–2005

20



'

&

$

%

Cascaded Hash functions

Cascade = Composition of several crypto functions in a single one

• The goal is usually to increase security

• With hash functions, the following construction is natural:

– Given H and G form:

(H(M)‖G(M)).

• Turns two 128-bits hash functions into a 256-bits one.

21



'

&

$

%

Security of a Cascade

• Clearly, with random oracles, the construction is secure.

• What happens with real hash functions ?

• Folklore knowledge:

– With two similar hash functions, this feels risky.

– If the hash functions are “independent”, it should be ok.

Here, we answer for iterated hash functions

22



'

&

$

%

Iterated Hash functions and k-collisions

Iterated hash functions are not k-collision free !

• Finding k-collisions with k > 2 is easier than expected

• Even when k is very large, it is still easy

• We show how to find 2t-collisions in time t · 2n/2

23



'

&

$

%

Iterated Hash functions and k-collisions

Assume (w.l.g.) that blocks are larger than internal states

• Finding a one block collision from any internal state x take times

2n/2.

• We represent it graphically by:

x r

B′

-

B
-

r y

24



'

&

$

%

4-collisions

• With two calls to the basic attack we find:

x r

B′

-

B
-

r y r

C′

-

C
-

r z

• This yields the following 4-collision

x r

B

�
�

�*
r

y
r

C

�
�

�*
rz

C′

H
H

Hj rz

B′

H
H

Hj r

y
r

C′

�
�

�*

rz

C

H
H

Hj

rz







































⇒ 4-collision

25



'

&

$

%

2t-collisions

• Similarly with t calls to the basic attack we find:

h0
r

B′

1

-

B1
-

r h1
r

B′

2

-

B2
-

r h2
r

B′

3

-

B3
-

r h3
. . . ht−1

r

B′

t

-

Bt
-

r ht

It yields a 2t-collision

26



'

&

$

%

Application to Cascades

• Given G and H, two n-bits iterated hash functions

• Find a 2n/2-collision on G

• Among this large set, with good probability, we find M and M ′

with

H(M) = H(M ′)

• Since, M and M ′ also collide on G we have

(H(M)‖G(M)) = (H(M ′)‖G(M ′))

• The runtime is O(n · 2n/2).

27



'

&

$

%

Application to Cascades

• It even works when H is a random oracle

• Thus cascading is not secure even when G and H are independent

• A similar attack applies to (second) preimage resistance

28



'

&

$

%

Other application

• Kelsey and Schneier (eprint 11/2004, Eurocrypt 2005)

• Renders the second preimage attack on long messages feasible

29



'

&

$

%

Specific attacks

• Many recent attacks on specific iterated hash algorithms

• Based on greatly improved differential attacks

– SHA family, neutral bits, Biham and Chen, Crypto’04

– MD4 and MD5, Wang et al., Eurocrypt’05

– SHA-0, J. et al, Rump session Crypto’04

– SHA-1, Wang et al., recent announce

30



'

&

$

%

Conclusion

Questions

31


